Category: Science

Hand-Painted Planetary Push Pins 

Tokyo-based industrial designer Duncan Shotton (previously) is known for his unique approach to houseware and stationery design, where he takes common objects from pencils to bookmarks and conceives of a novel twist. His latest creation is a series of push pins designed to look like the solar system called Planet Pins. The set includes the 8 planets (sorry Pluto fans) and an optional moon pin cast in concrete. Planet Pins just launched on Kickstarter and 100 sets are available as a signed limited edition.

See related posts on Colossal about , , .

An Intricate Cross-Section of the Brain Depicted With Thousands of Layers of Gold Leaf 

Self Reflected, 22K gilded microetching, 96″ X 130″, 2014-2016, Greg Dunn and Brian Edwards. The entire Self Reflected microetching under violet and white light. (photo by Greg Dunn and Will Drinker)

Self Reflected, 22K gilded microetching, 96″ X 130″, 2014-2016, Greg Dunn and Brian Edwards. The entire Self Reflected microetching under violet and white light. (photo by Greg Dunn and Will Drinker)

Taking nearly two years to complete, artist and neuroscientist Dr. Greg Dunn, along with his collaborator Dr. Brian Edwards, have mapped the neurons in the brain for a series of images titled Self Reflected. Produced through a technique they call reflective microetching, the two cross-disciplinary artists track the neural choreography in the mind, creating brilliant images that glow with a metallic luminescence.

The works depict a thin slice of the human brain at 22x the normal scale, each created through a combination of hand drawing, neuroscientific data, algorithmic simulation of neural circuitry, photolithography, strategic lighting design, and 1,750 sheets of 22k gold leaf.

“My work is neonaturalist, art based on natural forms and influenced by scientific advancements that allows us to perceive the universe beyond human senses,” explains Dunn in his artist statement. “Neonaturalism harmonizes unfamiliar scientific imagery and techniques with an experimental artistic scaffolding.”

Self Reflected was funded the National Science Foundation, and its first iteration is on permanent view at the Franklin Institute in Philadelphia, PA. Fine art prints and microetchings can be purchased on Dunn’s website. You can watch the work twinkle as it engages with a light source in the short video below. (via My Modern Met)

Self Reflected (detail), 22K gilded microetching, 96″ X 130″, 2014-2016, Greg Dunn and Brian Edwards. The brainstem and cerebellum, regions that control basic body and motor functions. (photo by Greg Dunn and Will Drinker)

Self Reflected (detail), 22K gilded microetching, 96″ X 130″, 2014-2016, Greg Dunn and Brian Edwards. The brainstem and cerebellum, regions that control basic body and motor functions. (photo by Greg Dunn and Will Drinker)

Self Reflected (detail), 22K gilded microetching, 96″ X 130″, 2014-2016, Greg Dunn and Brian Edwards. The thalamus and basal ganglia, sorting senses, initiating movement, and making decisions. (photo by Greg Dunn and Will Drinker)

Self Reflected (detail), 22K gilded microetching, 96″ X 130″, 2014-2016, Greg Dunn and Brian Edwards. The thalamus and basal ganglia, sorting senses, initiating movement, and making decisions. (photo by Greg Dunn and Will Drinker)

Self Reflected, 22K gilded microetching, 96″ X 130″, 2014-2016, Greg Dunn and Brian Edwards. The entire Self Reflected microetching under white light. (photo by Greg Dunn and Will Drinker)

Self Reflected, 22K gilded microetching, 96″ X 130″, 2014-2016, Greg Dunn and Brian Edwards. The entire Self Reflected microetching under white light. (photo by Greg Dunn and Will Drinker)

Self Reflected (detail), 22K gilded microetching, 96″ X 130″, 2014-2016, Greg Dunn and Brian Edwards. The visual cortex, the region located at the back of the brain that processes visual information.

Self Reflected (detail), 22K gilded microetching, 96″ X 130″, 2014-2016, Greg Dunn and Brian Edwards. The visual cortex, the region located at the back of the brain that processes visual information.

Self Reflected (detail), 22K gilded microetching, 96″ X 130″, 2014-2016, Greg Dunn and Brian Edwards. Raw colorized microetching data from the reticular formation.

Self Reflected (detail), 22K gilded microetching, 96″ X 130″, 2014-2016, Greg Dunn and Brian Edwards. Raw colorized microetching data from the reticular formation.

Self Reflected (detail), 22K gilded microetching, 96″ X 130″, 2014-2016, Greg Dunn and Brian Edwards. The pons, a region involved in movement and implicated in consciousness. (photo by Greg Dunn and Will Drinker)

Self Reflected (detail), 22K gilded microetching, 96″ X 130″, 2014-2016, Greg Dunn and Brian Edwards. The pons, a region involved in movement and implicated in consciousness. (photo by Greg Dunn and Will Drinker)

Self Reflected (detail), 22K gilded microetching, 96″ X 130″, 2014-2016, Greg Dunn and Brian Edwards. The parietal gyrus where movement and vision are integrated. (photo by Greg Dunn and Will Drinker)

Self Reflected (detail), 22K gilded microetching, 96″ X 130″, 2014-2016, Greg Dunn and Brian Edwards. The parietal gyrus where movement and vision are integrated. (photo by Greg Dunn and Will Drinker)

Self Reflected (detail), 22K gilded microetching, 96″ X 130″, 2014-2016, Greg Dunn and Brian Edwards. The motor and parietal cortex, regions involved in movement and sensation, respectively. (photo by Greg Dunn and Will Drinker)

Self Reflected (detail), 22K gilded microetching, 96″ X 130″, 2014-2016, Greg Dunn and Brian Edwards. The motor and parietal cortex, regions involved in movement and sensation, respectively. (photo by Greg Dunn and Will Drinker)

Self Reflected (detail), 22K gilded microetching, 96″ X 130″, 2014-2016, Greg Dunn and Brian Edwards. The midbrain, an area that carries out diverse functions in reward, eye movement, hearing, attention, and movement. (photo by Greg Dunn and Will Drinker)

Self Reflected (detail), 22K gilded microetching, 96″ X 130″, 2014-2016, Greg Dunn and Brian Edwards. The midbrain, an area that carries out diverse functions in reward, eye movement, hearing, attention, and movement. (photo by Greg Dunn and Will Drinker)

Self Reflected (detail), 22K gilded microetching, 96″ X 130″, 2014-2016, Greg Dunn and Brian Edwards. The laminar structure of the cerebellum, a region involved in movement and proprioception (calculating where your body is in space).

Self Reflected (detail), 22K gilded microetching, 96″ X 130″, 2014-2016, Greg Dunn and Brian Edwards. The laminar structure of the cerebellum, a region involved in movement and proprioception (calculating where your body is in space).

See related posts on Colossal about , , .

A Remarkable Time Lapse Video of Cell Division in a Frog Egg 

No, this isn’t digital. Filmed by documentary filmmaker Francis Chee, this amazing video captures the microscopic view of a frog egg as it begins to divide from two cells into millions over a period of about 33 hours. It’s astounding to think that each and every one of us started off just like this. (via Sploid)

See related posts on Colossal about , , , , .

A Fold Apart: A NASA Physicist Turned Origami Artist 

In 2001 NASA physicist Robert Lang quit his job to focus on his one true passion: creating original origami designs. With a deep understanding of mathematics and materials, Lang’s folding designs have been incorporated into everything from spacecraft to airbags. His works aren’t limited to functional objects, he’s also produced a wide range of original artworks that have been exhibited around the world. The Great Big Story recently sat down with Lang for this brief interview. (via Uncrate)

See related posts on Colossal about , , , , .

3D-Printed Solar Systems, Moons and Planets for Your Desktop 

The folks over at London-based Little Planet Factory make tiny 3d-printed planets and moons you can sit on your desktop or hold in your hands. Designs include everything from entire solar systems to collections of moons, individual planets, and even science fiction creations like a theoretical terraformed Mars globe. See more in their shop! (via So Super Awesome)

See related posts on Colossal about , , , , .

Page 1 of 321234...»